1,976 research outputs found

    On the Melting of Bosonic Stripes

    Full text link
    We use quantum Monte Carlo simulations to determine the finite temperature phase diagram and to investigate the thermal and quantum melting of stripe phases in a two-dimensional hard-core boson model. At half filling and low temperatures the stripes melt at a first order transition. In the doped system, the melting transitions of the smectic phase at high temperatures and the superfluid smectic (supersolid) phase at low temperatures are either very weakly first order, or of second order with no clear indications for an intermediate nematic phase.Comment: 4 pages, 5 figure

    Magnetization plateaux and jumps in a class of frustrated ladders: A simple route to a complex behaviour

    Full text link
    We study the occurrence of plateaux and jumps in the magnetization curves of a class of frustrated ladders for which the Hamiltonian can be written in terms of the total spin of a rung. We argue on the basis of exact diagonalization of finite clusters that the ground state energy as a function of magnetization can be obtained as the minimum - with Maxwell constructions if necessary - of the energies of a small set of spin chains with mixed spins. This allows us to predict with very elementary methods the existence of plateaux and jumps in the magnetization curves in a large parameter range, and to provide very accurate estimates of these magnetization curves from exact or DMRG results for the relevant spin chains.Comment: 14 pages REVTeX, 7 PostScript figures included using psfig.sty; this is the final version to appear in Eur. Phys. J B; some references added and a few other minor change

    Ferromagnetism of a Repulsive Atomic Fermi Gas in an Optical Lattice: a Quantum Monte Carlo Study

    Full text link
    Using continuous-space quantum Monte Carlo methods we investigate the zero-temperature ferromagnetic behavior of a two-component repulsive Fermi gas under the influence of periodic potentials that describe the effect of a simple-cubic optical lattice. Simulations are performed with balanced and with imbalanced components, including the case of a single impurity immersed in a polarized Fermi sea (repulsive polaron). For an intermediate density below half filling, we locate the transitions between the paramagnetic, and the partially and the fully ferromagnetic phases. As the intensity of the optical lattice increases, the ferromagnetic instability takes place at weaker interactions, indicating a possible route to observe ferromagnetism in experiments performed with ultracold atoms. We compare our findings with previous predictions based on the standard computational method used in material science, namely density functional theory, and with results based on tight-binding models.Comment: Published version with Supplemental Material. Added comparison with Hubbard model result

    Quantum Phase Transitions in Coupled Dimer Compounds

    Full text link
    We study the critical properties in cubic systems of antiferromagnetically coupled spin dimers near magnetic-field induced quantum phase transitions. The quantum critical points in the zero-temperature phase diagrams are determined from quantum Monte Carlo simulations. Furthermore, scaling properties of the uniform magnetization and the staggered transverse magnetization across the quantum phase transition in magnetic fields are calculated. The critical exponents are derived from Ginzburg-Landau theory. We find excellent agreement between the quantum Monte Carlo simulations and the analytical results.Comment: 7 pages, 9 eps-figure

    Competing states in the t-J model: uniform d-wave state versus stripe state

    Get PDF
    Variational studies of the t-J model on the square lattice based on infinite projected-entangled pair states (iPEPS) confirm an extremely close competition between a uniform d-wave superconducting state and different stripe states. The site-centered stripe with an in-phase d-wave order has an equal or only slightly lower energy than the stripe with anti-phase d-wave order. The optimal stripe filling is not constant but increases with J/t. A nematic anisotropy reduces the pairing amplitude and the energies of stripe phases are lowered relative to the uniform state with increasing nematicity.Comment: 6 pages, 4 figures, 4 pages of supplemental materia

    A continuous-time solver for quantum impurity models

    Full text link
    We present a new continuous time solver for quantum impurity models such as those relevant to dynamical mean field theory. It is based on a stochastic sampling of a perturbation expansion in the impurity-bath hybridization parameter. Comparisons to quantum Monte Carlo and exact diagonalization calculations confirm the accuracy of the new approach, which allows very efficient simulations even at low temperatures and for strong interactions. As examples of the power of the method we present results for the temperature dependence of the kinetic energy and the free energy, enabling an accurate location of the temperature-driven metal-insulator transition.Comment: Published versio
    • …
    corecore